Yun Wang

🛇 Shenzhen, China 🛛 🖂 ywang3875-c@my.cityu.edu.hk 🕓 15827391198 🌀 Google Schloar 🔉 cocowy

Reasearch Topic

3D Vision, Depth Estimation, Style Transfer, Multi-modal Vision Language Models

Education

PH.D	 City University of Hong Kong (QS Ranking: 63), Computer Science GPA: 3.5 Supervisor: Prof. Dapeng Wu Z, IEEE Fellow 	Kowloon, HK SAR Aug.2023 - 2027
M.S	 Sun Yat-sen University (985), Information and Communication Engineering GPA: 88.03 (top 10%) Supervisor: Prof. Yulan Guo ☑, the National Science Fund for Excellent Young Scholars 	Guangzhou, China Aug.2020 - Jun.2023
B.E	 China University of Geosciences (211), Electronic Information Engineering GPA: 3.75/4.0 (1/116, top 1%) 	Wuhan, China Aug.2016 - Jun.2020
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS) Research Internship		Shenzhen, China Aug. 2024 – May. 2025
а	vevelop a self-supervised depth estimation algorithm for autonomous driving, chieving high estimation accuracy comparable to supervised methods without elying on ground-truth labels. AAAI 2025 Oral, Published .	
e	evelop a robust depth estimation algorithm by adapting Vision Foundation Mod- ls for 3D Reconstruction, achieving state-of-the-art generalization ability com- ared to counterparts. ICCV 2025, Published .	
	evelop an efficient and highly accurate dynamic scene 3D reconstruction MVS nethod, achieving state-of-the-art performance compared to counterparts. Neu-	

Publications _____

Lightweight Depth Estimation Model Design

ralIPS 2025, Under Review.

- Wang, Yun and Wang, Longguang, and Wang, Hanyun and Guo, Yulan^{*}. SPNet: Learning Stereo Matching with Slanted Plane Aggregation. IEEE Robotics and Automation Letters (JCR Q1), 2022
- Guo, Yulan*, **Wang, Yun** and Wang, Longguang and Wang, Zi. CVCNet: Learning Cost Volume Compression for Efficient Stereo Matching. **IEEE Trans on Multimedia (SCI Top Journal, CCF-B), 2022**.
- Wang, Yun and Wang, Longguang, and Kunhong, Li, and Wang, Zi, and Dapeng Oliver Wu, and Guo, Yulan*. Revisiting Cost Aggregation in Stereo Matching from Disparity Classification. IEEE Trans on Image Processing (SCI Top Journal, CCF-A), 2024.
- Wang, Yun and Li, Kunhong, and Wang, Longguang, and Hu, Junjie, and Dapeng Oliver Wu, and Guo, Yulan*. AD-Stereo: Learning Stereo Matching with Adaptive Downsampling and Disparity Alignment. IEEE Trans on Image Processing (SCI Top Journal, CCF-A), 2025.

Self-supervised Model Desgin

 Wang, Yun and Zheng, Jiahao, and Zhang Chenghao, and Zhang Zhanjie, and Li Kunhong, and Zhang Yongjian, and Hu Junjie*. DualNet: Self-supervised Learning for Stereo Matching with Pseudo-label Supervision. AAAI 2025 Oral (CCF-A, Acceptance Rate: 4.6%)

- Wang, Yun and Yang, Zhengjie, and Zhang, Chenghao, and Dapeng Oliver Wu^{*}, and Guo, Yulan. SMFormer: Empowering Self-supervised Stereo via Foundation Models and Contrastive Learning. IEEE Trans on Image Processing (SCI Top Journal, CCF-A, Under Review).
- Wang, Yun and Yang, Zhengjie, and Zhang, Chenghao, and Hou, Junhui, and Dapeng Oliver Wu^{*}. RoSe: Robust Selfsupervised Stereo Matching under Challenging Weather Conditions. IEEE Trans on Circuits and Systems for Video Technology (SCI Top Journal, CCF-B, Under Review).

Robust Model Desgin

- Zhang, Yongjian, and Wang, Longguang, and Li, Kunhong, and **Wang, Yun**, and Guo, Yulan*. Learning representations from foundation models for domain generalized stereo matching. **ECCV 2024 (CCF-B, Acceptance Rate: 27.4%)**
- Wang, Yun, and Wang, Longguang, and Zhang, Chenghao, and Zhang, Yongjian, and Zheng, Jiahao, and Zhang, Zhanjie, and Fan, Chenyou, and Lam, Tin Lun, and Hu, Junjie^{*}. SMoEStereo: Selective Mixture of Experts with Parameter-Efficient Fine-tuning for Robust Stereo Matching. ICCV 2025 (CCF-A, Acceptance Rate:24%).

Dynamic 3D Construction

• Wang, Yun, and Dong, Qiaole, and Zheng, Jiahao, and Zhang, Zhanjie, and Dapeng Oliver Wu^{*}, and Hu, Junjie. Mem-Stereo: Consistent Dynamic Stereo Matching with Dynamic Memory Aggregation. NeuralIPS 2025 (CCF-A, Preparation).

Multi-modal Vision Language Tasks

- Wang, Bimei, and Dang, Jishen, and Wang, Yun, and Chen, Zixuan, and Li, Jiyuan, and Wang, Teng, and Yang, Jun*. Instruction-aware Memory Network for Video Recognition. ICME 2025 (CCF-B, Acceptance Rate: 30%).
- Ma, Ao, and Feng, Jiasong, and Cao, Ke, and **Wang, Yun**, and Zhang, Quanwei, and Zhang, zhanjie*. Lay2Story: Extending Diffusion Transformers for Layout-Togglable Story Generation **ICCV 2025 (CCF-A, Acceptance Rate: 24%)**.

Skills & Language Abilities ____

Technologies:

- Deep Learning: Pytorch
- Basic Programing: Python, C/C++, javascript

Languages:

- Chinese: Native Speaker
- English: IELTS 6.5 (Reading: 9.0)

Summary .

I am a 2nd Ph.D. student in the Computer Science Department of City University of Hong Kong, advised by Prof. **Dapeng Wu**, and my master's degree is obtained in Electronic Information Engineering from SYSU, which was advised by Prof. **Yulan Guo**. My research interests lie in 3D computer vision and Multi-modal Large Models, focusing on related fields such as Self-supervised Learning, Lightweight design, Vision Foundation Models, and multi-modal vision language models.